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Information Communication Technology in 
Heterogeneous Networks 

•   Diverse applications over Heterogeneous Technologies 

•   Any-application-over-IP; IP-over-any-physical-layer; End-to-end principle 

•  “Faster”, “Higher”, “Smarter” 

DATA Center 



Optics in Future Information Systems S.J.Ben Yoo, yoo@ece.ucdavis.edu 5 

Photonic Networking Trends 

Optical Internetworking 

Router 

Router 
SONET 
NE SONET 

NE 

Optical Network 

Switch 

Switch 

Router 

Switch 

WDM WDM 

WDM 

DWDM & 
Optical Label  
Switching DWDM 

SONET 
ATM 

IP 

DWDM 

SONET 

IP & MPLS 

DWDM & 
Optical Switching 

Thin SONET 
IP & GMPLS IP & GMPLS Optical 

Label 



Optics in Future Information Systems S.J.Ben Yoo, yoo@ece.ucdavis.edu 6 

Progress in Optical Networks 
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Optical-label Switching Network 
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  Interoperability 
  Transparency to Data 
  Flexible granularity 
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•   Interoperability 
– Multivendor NEs 
– Circuit Switching 
– Flow Switching 
– Burst Switching 
– Packet Switching 

•   All-Optical Data Plane and Hybrid Control Plane 
•   Protocol Independent Data Payload 
•   Minimum Buffering– low latency and jitter 
•   All-optical contention resolution  
•   Free from strict synchronization 
•   Support variable length packets, asynchronous 

forwarding 
•  Exploit much of the existing control plane protocol 

Key Approaches to Optical-Label Switching 
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Optical-Label Format and Protocol (40 bit label 
example: can be extended or hierarchically stacked) 

00 Destination Source Priority Duration Exp OTTL QoS ToS 

CLASS_A:  destination oriented without TE 

01 Destination Source Priority Duration TE OTTL QoS ToS 

CLASS_B:  destinaton oriented with TE 

10 Label Priority Duration Exp OTTL QoS ToS 

CLASS_C: label based forwarding 

11 Label Priority Set Exp OTTL QoS ToS 

CLASS_D: circuit swtching  

S. J. B. Yoo, "Optical-label switching, MPLS, MPLambdaS, and GMPLS," Special Issue on: 
Prospects and Challenges: Next Generation Optical Network Architectures, Optical Networking 
Magazine, Kluwer Academic Publishers (2002) (invited).  
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Hierarchical Control & Management 

 Brain: Interelement Control (out-
of-band DCC) 
  Slow but elaborate 
  Performance monitoring based on 

labels 
  Anomaly detection 
 Overall view of network (topology) 
  Listens and instructs the Reflex 

 Reflex: Distributed Control (in-
band DWDM, Label based) 
  Rapid and reflex-like 
  Packet forwarding 
  Anomaly detection  
  Communicates with the Brain 

Network  
Control and  
Management 

WDM 
DCC 
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Monitoring: Getting a Big Picture 
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Network 

Collected Labels can tell NC&M how much sourcing and 
sinking are going on at each node 
Identify pattern of attack (e.g. DoS) via Datamining 
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IPNE: Detect Anomaly and Intrusion 

Protected  
Domain 

IPNE IPNE Neighbor 
Domain 

Attacker 
Attacker 

•  The IPNEs surrounding a domain can detect 
anomalies/intrusion by monitoring traffic; 

•  The IPNEs will scan through data packets and 
mark the relevant security information; 

•  All network elements will “watch” each other to 
detect the compromised ones; 
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All-Optical Label Switching Router 
In support of agile and energy efficient networking   
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Full View of the Optical Label Switching Router 
Testbed Setup 
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Scalability of OLS Network 



Optics in Future Information Systems S.J.Ben Yoo, yoo@ece.ucdavis.edu 16 

1,001 hop cascaded OLS router w/Optical 3R 
Experimental Results (ECOC'06, paper Tu4.6.2, Jun. 2006.)  

Zhong Pan, Masaki Funabashi, Zuqing Zhu, 
Haijun Yang, and S. J. B. Yoo, "
Error-free 1,001-hop Cascaded Operation of an 
Optical-label Switching Router with Optical 3R 
Regeneration," in Technical Digest of ECOC'06, 
paper Tu4.6.2, Jun. 2006.  
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477 km Optical Label Switching Field Trial   
V.J. Hernandez, et al, "First Field Trial of Optical Label Switching and Packet Dropping on a 477km NTON/
Sprint Link,“ OFC 2002, paper #TuY4 
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Video/Packet/Optical Network Testbed Demo 
 w/ Multicast and Unicast 
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Future Multiwavelength Optical Networking 
with Agile 100 G Optical Trx, Rcv, Regen 
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100G serial transport 

• Use single wavelength (can be 
multi-level) 
•  Needs 100 G (or 2x50G) 
electronics 
•  Better spectral efficiency but 
more sensitive to dispersion and 
PMD 

•  Use multiple wavelengths & 
modulators 
•  Needs 10 G electronics with 
possible synchronization 
•  Manageable dispersion and 
PMD but poorer spectral 
efficiency 
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100G parallel transport (OTN VCAT) 

Today’s Serial vs. Parallel 100 G technology   
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OAWG based 100 G~1Tb/s Transmission with  
~10 G electronics  

  At a glance, this is useful for parallel 40G/100G Trx/Rcv with independent ASK, PSK, 
DPSK, QPSK, DQPSK, etc. 
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1 THz (100ch x 10 GHz) OAWG encoder 

Mask Layout Fabricated Chip 
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360 Gb/s PRBS Data OOK & DPSK 
(experiment) 
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Predistorted 360 Gb/s  10 km Single Mode Fiber  
Transmission Results 
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400 Gb/s NRZ-OOK PRBS generation 1 bit/s-Hz 

400 Gb/s NRZ-OOK PRBS generation (40-bit-length) (a) Spectral domain (blue) intensity 
and (red) phase targets indicated by ‘x’. (b) Time-domain optical field (blue) intensity and 
(red) phase. Target packet indicated by lighter shades. (c) Target and (d) measured eye 
diagrams. 
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1.2 Tb/s NRZ-16QAM PRBS with 3 bit/s-Hz 

120 bit 1200 Gb/s NRZ-QAM packet (a) spectral intensity (blue) and phase (red), and 
(b) optical field (blue) intensity, (red) phase. Target indicated by lighter shades and 
‘x’. (c) Target and (d) measured constellation diagrams.  
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Optical Arbitrary Waveform 
Measurements 

•  Spectral slices of the signal (S) are coherently detected using a 90° 
optical hybrid circuit (OHC) and a single mode from the LO OFC 

•  Fast photodiodes (bandwidth>spectral slice width) measure the four 
OHC outputs 

•  Post processing reconstructs signal from measured outputs 
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Flexible Spectral Slice Networking 



Optics in Future Information Systems S.J.Ben Yoo, yoo@ece.ucdavis.edu 29 

Computing of the Future 

MegaWatts of Power 

100’s of racks 
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Interconnection Topologies 

3
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Forward Backward 

  Nodes at tree leaves 
  Switches at tree vertices 
  Total link bandwidth   is constant across all tree levels, with full bisection bandwidth 
  Equivalent to folded Benes topology 
  Preferred topology in many system area networks 

Folded Clos = Folded Benes  = Fat tree network 
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 © T.M. Pinkston, J. Duato, with major contributions by J. Filchv 
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Scalable and Low Latency Optical Switch 

3
1
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Normalized Goodput vs. Load 
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End-to-End Latency 
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Key Points 
  Future Internet with  

 New Architecture Exploiting Optical Parallelism, Optical 
Performance Monitoring, Integrated Photonics 

  Energy Efficient & High-Performance: Low Latency, High 
Throughput, Parallel Processing 

 OLS Networking:  
  integration of Circuit, Flow, Burst, and Packet Switching 
  Pipelined Processing Store-and-Forward 
  Smart Edge and Fast Core 
  Exploit WAVELENGTH domain, and use Wavelength-Time-

Space Domain contention resolution 
 Computing of the future 

 Contention-free optical interconnection switch  
  Extremely low latency and high throughput 
 High Throughput and Parallel Computing 


